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Definition 
 
The ocean-atmosphere water exchange is the difference between evaporation and 
precipitation at the surface of the ocean.  Evaporation is the turbulent transport of water 
vapor from to ocean to the atmosphere.  Precipitation is return of water to the ocean from 
the atmosphere in form of rain and snow. 
 
Significance 
 
Water is the essential element for life. Over 70% of the Earth’s surface is covered by the 
ocean, which forms the largest reservoir of water on earth. The never-ending recycling 
process in which a small fraction of water is continuously removed from the ocean as 
excess evaporation over precipitation into the atmosphere, redistributed through 
atmospheric circulation, deposited as excess precipitation over evaporation on land, and 
returned to the ocean as river discharge, is critical to the existence of human life and the 
variability of weather and climate. 
 
With their high specific heat and large thermal inertia, the oceans are also the largest 
reservoir of heat and the flywheel of the global heat engine.  Since water has high latent 
heat, evaporation is also an efficient way to transfer the energy.  Besides releasing latent 
heat to the atmosphere, the water transported from the ocean to the atmosphere forms 
clouds, which absorb and reflect radiation. Water vapor is also an important greenhouse 
gas, which absorbs more long-wave radiation emitted by Earth than the short-wave 
radiation from the Sun.  Redistribution of clouds and water vapor changes the Earth’s 
radiation balance.  
 
The differential heating of the atmosphere by the ocean fuels atmospheric circulation, 
which, in turn, drives ocean currents.  Both wind and current transport and redistribute 
heat and greenhouse gases.  Adding heat and water changes density of air and seawater. 
The heat and water fluxes, therefore, change both the baroclinicity and stability 
(horizontal and vertical density gradients) of the atmosphere and the ocean.  These, in 
turn, modify the shears of wind and current. 
 
 
Spacebased Estimation 
 
The equation of water balance in the atmospheric column is 
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is the moisture transport integrated over the depth of the atmosphere, and 
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is the precipitable water, or column integrated water vapor. In these equations, p is the 
pressure, ps is the pressure at the surface, q and u are the specific humidity and wind 
vector at a certain level. Bold symbols represent vector quantities. F is the fresh water 
exchange between the ocean and the atmosphere and is the difference between 
evaporation (E) and precipitation (P) at the surface. The first term is the change of storage. 
For periods longer than a few days, it is negligible, and there is a balance between the 
divergence of the transport (�·����) and the surface flux. The balance gives rise to two 
ways of estimating the fresh water flux. One is to measure E and P separately; the other is 
to estimate ����. There are many programs to produce P (see Rainfall, by R. Ferraro, in this 
book) and we will not discuss it in this paper. One of the most advanced statistical 
techniques, support vector regression (SVR) has been used recently to retrieve surface 
specific humidity (qs), E, and ����, from spacebased data.  
 
E is air-sea exchange of water vapor by turbulence; the small-scale turbulence is largely 
independent of factors governing large-scale atmospheric circulation (e.g., baroclinicity, 
Coriolis force, pressure gradient force, cloud entrainment), while ���� is not as sensitive as 
E to small-scale ocean processes. Meteorologists sometimes view the traditional way of 
estimating E through the small turbulent-scale processes as the “supply side” estimation; 
the water is supplied by the ocean. The large-scale atmospheric divergence demands the 
water flux from the ocean and the estimation of E from �·���� is termed as the “demand 
side” estimation.   
 
Bulk Parameterization-the supply side 
 
Most productions of spacebased evaporation data sets in the past were based on bulk 
parameterization.. Latent heat flux (LH) is related to E by the nearly constant value of 
latent heat of vaporization(L): LH=L×E. LH, rather than E, is used in many of the past 
studies. The two parameters are used interchangeably in this paper, and our discussion on 
E applies equally to LH. 
 
The computation of E by the bulk parameterization requires sea surface temperature 
(SST), wind speed (u), and q.   
  E = CE u(qs – q)                                                               (4) 
where CE is the transfer coefficient,  is the surface air density. qs is usually taken to be 
the saturation humidity at SST multiplied by a factor of 0.98 to account for the effect of 
salt in the water. u and q should be measured in the atmospheric surface (constant flux) 
layer, usually taken at a reference level of 10 m. Over the ocean, u and SST have been 
measured from space, but not q. A method of estimating E using satellite data was 
demonstrated by Liu and Niiler (1984), based on an empirical relation between W and q 
on a monthly time scale over the global ocean (Liu 1986). The physical rationale is that 
the vertical distribution of water vapor through the whole depth of the atmosphere is 
coherent for periods longer than a week (Liu et al. 1991). The relation has been 
scrutinized in a number of studies and many variations of this method have been 
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proposed to improve on the estimation (see Liu and Katsaros, 2001, for a review of 
earlier studies). Modification of this method by including additional estimators has been 
proposed (e.g., Wagner et al. 1990; Cresswell et al. 1991; Miller and Katsaros 1991; 
Chou et al. 1995), with various degrees of improvement. Recently, neural network has 
also been used to mitigate the non-linearity problem in derive q (Jones et al. 1999; 
Bourras et al. 2002; Roberts et al. 2010). Algorithms to retrieval q from brightness 
temperatures (BT) measured by microwave radiometers were developed and 
improvements were demonstrated (e.g., Schultz et al. 1997; Schlüssel et al. 1995; Jackson 
et al. 2009). Yu and Weller (2007) have combined spacebased observations with model 
output. Fig. 1 shows the validation of q derived from BT measured by the Advanced 
Microwave Scanning Radiometer - Earth Observing System (AMSR-E) through a 
statistical model built on SVR.  The model outputs are compared with coincident q 
measured at buoys. For the year of 2008, 30,000 buoy data were randomly selected for 
validation. The mean and root-mean-square (rms) differences are 0.05 and 1.05 g/kg 
respectively. The rms difference is only 5% of the range of 20 g/kg and the statistical 
model appears to be successful.  However, E depends on q=qs-q, which is the small 
difference between the two large terms (qs and q), and a small percentage error in q may 
still cause a large error in q and E. 
 
Liu (1990) suggested and demonstrated two potential ways to improve E retrieval from 
satellite data. The first is to incorporate information on vertical distribution of humidity 
given by atmospheric sounders. Jackson et al. (2009) have recently adopted this 
suggestion. The other is to retrieve E directly from the radiances, since all the bulk 
parameters used in the traditional method could be derived from radiances measured by a 
microwave radiometer.  The direct retrieval method may improve accuracy in two ways. 
The first is to by-pass the uncertainties of the bulk transfer coefficients to be used. The 
second is to mitigate the magnification of error caused by multiplying inaccurate 
measurement of wind speed with inaccurate measurements of humidity (q and qs) in the 
bulk formula.  
 
Fig. 2 compares the uncertainties of two sets of LH derived from the two methods. For 
the first set, SST and u from AMSR-E produced by Remote Sensing System (Wentz and 
Meissner, 2000) are used with q derived from AMSR BT (same as those in Fig. 1).  The 
second set is the output of a statistical model built on SVR, predicting E from the 12-
channel AMSR-E BT. A total of 30,000 randomly selected LH computed from 3 groups 
of buoy data in 2008 are used in the validation exercise. Direct retrieval of daily values 
reduces the rms difference from 77 w/m2 of the bulk parameterization method to 38 
w/m2.  This is equivalent to a reduction from 19% to 9.7% of the dynamic range of 400 
W/m2. 
 
The available E (or LH) products and the bulk parameters used to derive them exhibit 
substantial differences (e.g., Brunke et al. 2002; Bourras 2006; Smith et al. 2011; 
Santorelli et al., 2011).  The conservation principle (Eq. 1) and the demand side 
evaluation may serve as an effective way to evaluate current E products.  
 
Divergence of Moisture Transport-the Demand Side 
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The computation of ����, as defined in Eq. 2, requires the vertical profile of q and u, which 
are not measured by spacebased sensors with sufficient resolution. ���� can be viewed as 
the column of water vapor W advected by an effective velocity ue, so that ue=����/W, and ue 
is the depth-averaged wind velocity weighted by humidity. W has been derived from 
microwave radiometer measurements with good accuracy. Methods were developed to 
related ue to the equivalent neutral wind measured by scatterometers, us, based on 
polynomial regression (Liu 1993) and neural network (Liu and Tang 2005). Xie et al. 
(2008) added cloud-drift winds at 850 mb to us, and used SVR instead of neural network.  
The scatterometer measurement and the cloud drift winds represent ocean surface stress 
and free-stream velocity respectively. Xie et al. (2008) show the ���� derived from their 
statistical model agree with ���� derived from 90 rawinsonde stations from synoptic to 
seasonal time scales and from equatorial to polar oceans. Hilburn (2010) found very good 
agreement between this data set and data computed from Modern Era Retrospective-
analysis for Research and Applications (MERRA) over the global ocean. MERRA is a 
NASA atmospheric reanalysis using a major new version of the Goddard Earth System 
Data Assimilation System (Rienecker et al. 2011).  Fig. 2 shows that, for a total of 26,000 
pairs randomly selected data, 2/3 from rawinsonde and 1/3 from the reanalysis, the RMS 
difference is 57.5 kg/m/s and the correlation coefficient is 0.95 for zonal component, and 
49.7 kg/m/s and 0.89 for meridional component, for a range of approximately -600 to 
+600 kg/m/s. 
 
Validation of our spacebased estimation of �·���� as F was achieved through mass balance 
over ocean and continent, using the Gravity Recovery and Climate Experiment (GRACE), 
which is a geodesy mission to measure Earth’s gravity field. The variations of the gravity 
field are largely the results of the change of water storage. The air-sea water flux given 
by �·���� integrated over all ocean area, together with river discharge (R) from all 
continents should balance the rate of mass change ( M/ t) of all oceans: 

∂M

∂t
		 = R − 	 ⋅Θ			                        (5) 

Fig. 3 shows that monthly rate of mass change (- M/ t), measured by GRACE, integrated 
over all oceans, balances �·���� (Xie et al. 2008) integrated over the ocean areas minus the 
line-integral of R over all coastlines, both in magnitude and in phase. The difference 
between -�� M/ t and ���·����-�R has a mean of 2.1 108kg/s and a standard deviation of 2.6 
108kg/s, for a peak-to-peak variation of more than 10 108kg/s. The uncertainties in time 
varying river discharge and ice melt contribute to a large part of error. Mass is conserved 
in the long term, and first term in Eq. 5 is negligible. The total ocean surface water flux 
should balance the total water discharge from continent to ocean.  The ���·���� four-year 
mean of 10.6 cm/yr, computed from outputs of the statistical model is lower than the 
climatological value of 12 cm/yr given in text book published 36 years ago (Budyko 
1974), and higher than the climatological river discharge of 8.6 cm/yr (Dai and Trenberth 
2002). There are, in general, 20% uncertainties of these hydrologic parameters over 
global ocean. 
 
Based on Green’s Theorem, the areal integral of the flux divergence should balance the 
line integral of flux out of the area.  The last term of Eq. 5 should equal to total water 
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vapor across the coastlines of all continents. Another example of the role of ���� in the 
conservation principle is given by Liu et al. (2006).  They showed that  across the entire 
coastline of South America, with the river discharge removed, agrees with the mass 
change of the continent both in magnitude and phase of seasonal changes.  
 
Comparison Between Supply and Demand 
 
As an example, the three-year averages of �·���� and E-P are shown in Figure 5. In this 
example, P is based on Tropical Rain Measuring Mission (TRMM) Microwave Imager 
product, and E is from our direct retrieval from BT. There are general agreement is the 
magnitude and geographical distribution, but differences in the details.  Away from 
coastal regions, the supply side is larger than the demand side in the tropical southeastern 
Pacific, tropical south Atlantic, and a region from the Somali coast extending into the 
northern Arabian Sea.  The demand side is larger than the supply side in the warm pool of 
the western tropical Pacific and under the ITCZ. The differences may reveal regional 
hydrodynamics. 
 
Summary 
 
There have been continuous endeavors to estimate E and LH over global oceans using 
satellite data and based on bulk parameterization of turbulence transport, since Liu and 
Niiler (1984) successfully estimated the flux by introducing an empirical relation 
between monthly W and q.  With some improvement in this ‘supply side’ approach, a 
number of data sets have been operationally produced in the past two decades, but large 
differences among these data sets and between products from satellite data and from re-
analysis of operational weather prediction remain (e.g. Curry et al. 2004).  Evaluations to 
find the optimal product are difficult because of the lack of credible standards (e.g., 
extensive direct flux measurement). One good constraint to the uncertainties is the 
closure of the atmospheric water budget, which dictates that E-P should balance �·����.  
The ‘demand side’ approach of estimating ���� and �·���� from satellite data serves not only 
as a credible way to evaluate traditional ‘supply side’ flux products but also to provide 
the ocean fresh water exchange as a whole, without securing precipitation separately. The 
���� data have been extensively tested in comparison with all available rawinsonde data and 
products of numerical models.  The water flux data, as �·����,  are also validated through 
mass conservation using gravity data from GRACE and river discharge, to within 20% of 
the seasonal cycle. We have also introduced a new method of direct retrieval of E and LH 
from the measured radiances, which improves the random error of the daily value of LH 
to 10% of the dynamic range from 19% error for computing the fluxes from bulk 
parameters derived from the same radiances. There is still much room left for 
improvement. The new spacebased data products, with better spatial and temporal 
resolution, have many ongoing scientific applications.  
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Fig. 5 Three year (2003-2005) annual mean distribution of (a) the divergence of 
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Fig. 1 Bin-average of near surface specific humidity (q) derived from the statistical model 
compared with values measured at three groups of buoys. Standard deviation is superimposed 
on each bin average as error bars. 
�
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Fig. 2 Bin-average of LH derived directly from the satellite measured radiance (a) compared 
with values computed from bulk parameters (b) measured at three groups of buoys.  Standard 
deviation is superimposed on each bin average as error bars. 
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Fig. 3 Bin-averaged zonal component (a) and meridional component (b) of integrated moisture 
transport (����), derived from satellite data, as compared with co-incident data computed from 
rawinsondes. Standard deviation is superimposed on each bin average as error bars. 
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Fig. 4 Annual variation of hydrologic parameters integrated over global oceans. 
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Fig. 5 Annual mean distribution of the divergence of three years between 2003-2005 (a), and 
evaporation-precipitation, derived from AMSR-E and TMI respectively (b).�


